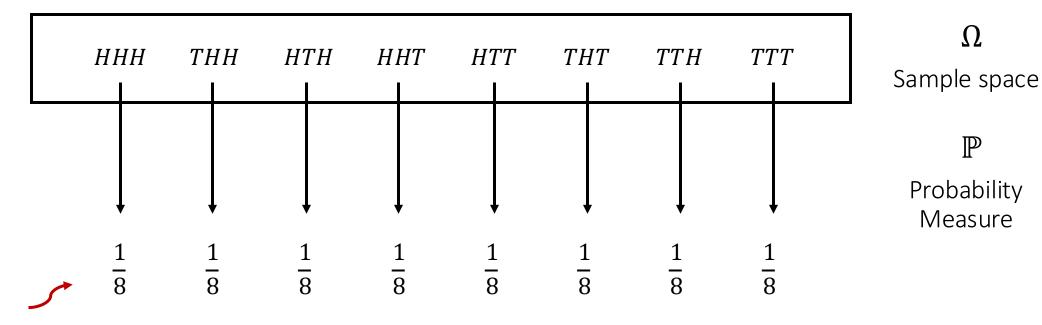
Probability Theory

CS 70 Discussion 8A

Raymond Tsao

2025-03-15


Note: These slides are unofficial course materials. Please use the notes as the only single source of truth.

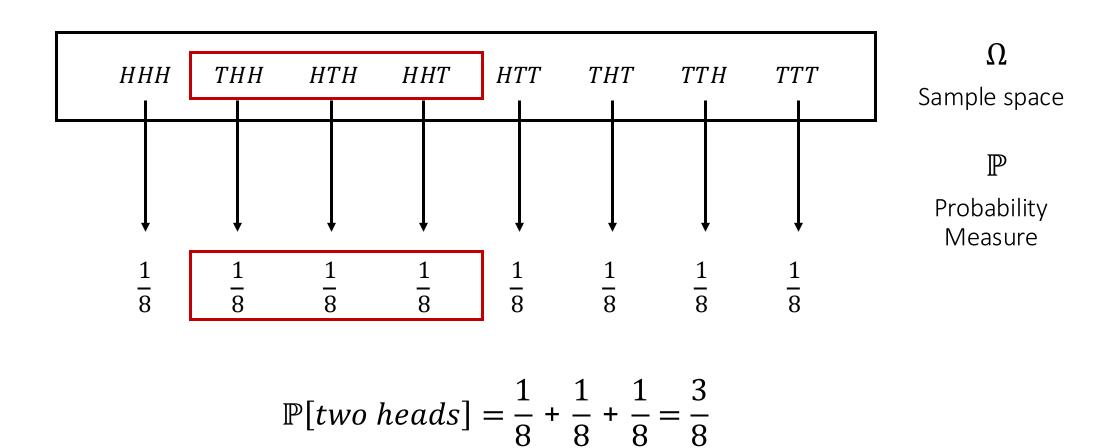
Some additional questions to consider for problem 2:

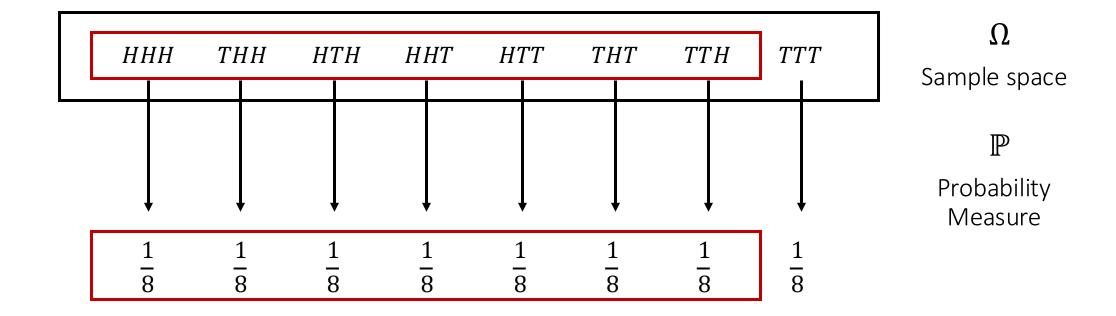
Q1: What if the coin is biased? Say $\mathbb{P}[H] = \frac{1}{3}$, $\mathbb{P}[T] = \frac{2}{3}$

Q2: Now extend this to tossing n unbiased coins, what is the probability that you get

k heads?

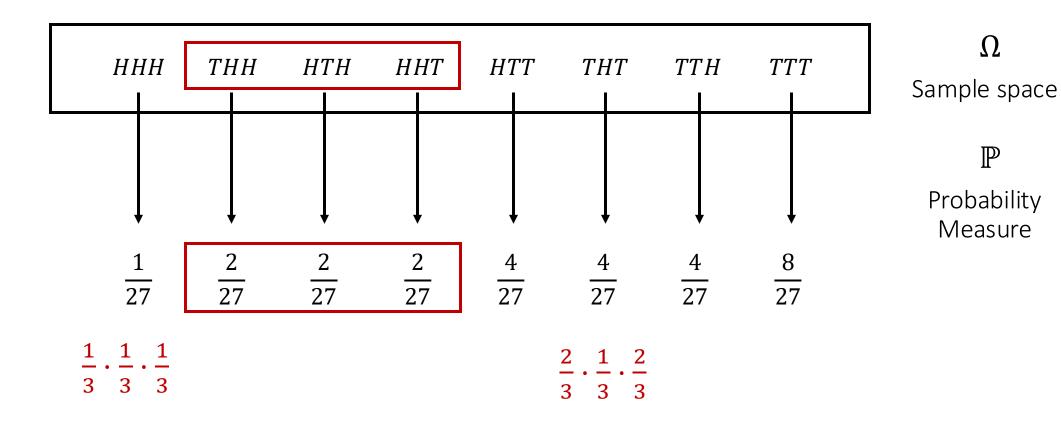
Interpretation 1:


Interpretation 2:


Uniform probability, so

$$\frac{1}{|\Omega|}$$

$$T \qquad T \qquad T$$


$$\frac{1}{2} \quad \cdot \quad \frac{1}{2} \quad \cdot \quad \frac{1}{2} \quad = \frac{1}{8}$$

 $\mathbb{P}[at \ least \ one \ head] = 1 - \mathbb{P}[zero \ head]$ $= 1 - \frac{1}{9} = \frac{7}{9}$

What if
$$\mathbb{P}[H] = \frac{1}{3}$$
, $\mathbb{P}[T] = \frac{2}{3}$?

Solving probability problems, first identify (ALWAYS!)

- Sample space Ω
- ullet Probability measure ${\mathbb P}$

To compute probability of an event A:

Sum of probability weights in A

$$\mathbb{P}[A] = \sum_{w \in A} \mathbb{P}[w]$$

Usually a counting problem

If working with uniform probability:

$$=\sum_{w\in A}\frac{1}{|\Omega|}=\frac{|A|}{|\Omega|}$$

Toss n unbiased coins, what is the probability of getting k heads?

• Sample space Ω

- $\Omega = \{HHH..H,THH...H,...\}$
- Probability measure $\mathbb P$

$$\mathbb{P}[w] = \frac{1}{|\Omega|} = \frac{1}{2^n} \qquad \frac{}{2} \quad \frac{}{2} \quad \frac{}{2} \quad \frac{}{2} \quad \frac{}{2} \quad \frac{}{2} \quad \frac{}{2}$$

What is the probability of getting k heads? A: Set of all length n sequence with k heads

$$\mathbb{P}[A] = \frac{|A|}{|\Omega|} = \frac{\binom{n}{k}}{2^n} \qquad \boxed{1 \quad 2 \quad 3 \quad 4 \quad n-1 \quad n}$$

From n indices choose k indices to put H

Length n combinations of H and T

An urn contains n balls, of which one is "special", suppose you sample k balls at once, what is the probability you get the "special" ball?

What is the sample space and probability function?

Second ball

$$(1,1)$$
 $(1,2)$ $(1,3)$... $(1,n)$
 $(2,1)$ $(2,2)$ $(2,3)$... $(2,n)$
 $(3,1)$ $(3,2)$ $(3,3)$... $(2,n)$
 \vdots \vdots \ddots \vdots
 $(n,1)$ $(n,2)$ $(n,3)$... (n,n)

$$\binom{n}{2}$$

Way 2: Geometric argument

$$2 \times [Triangle] + [Diagonal] = n^{2}$$

$$[Triangle] = (n^{2} - n)/2$$

$$= \frac{\binom{n}{2}}{n^{2}}$$

```
(1,1) (1,2) (1,3) ... (1,n)

(2,1) (2,2) (2,3) ... (2,n)

(3,1) (3,2) (3,3) ... (2,n)

\vdots \vdots \vdots \ddots \vdots

(n,1) (n,2) (n,3) ... (n,n)
```

$$\{(1,2),(2,3),(3,4),...(n-1,n)\} = \frac{n-1}{n^2}$$

$$(1,1) \quad (1,2) \quad (1,3) \quad \cdots \quad (1,n)$$

$$(2,1) \quad (2,2) \quad (2,3) \quad \cdots \quad (2,n)$$

$$(3,1) \quad (3,2) \quad (3,3) \quad \cdots \quad (2,n)$$

$$\vdots \quad \vdots \quad \ddots \quad \vdots \qquad \frac{1}{n} \cdot \frac{1}{(n-1)} = \frac{1}{n(n-1)}$$

$$(n,1) \quad (n,2) \quad (n,3) \quad \cdots \quad (n,n)$$

$$(b) = \frac{1}{2} \qquad (c) = \frac{(n-1)}{n(n-1)}$$

Problem 4: Intransitive Dice

What is the sample space and probability function?

$$(2,1)$$
 $(4,1)$
 $(9,1)$
 $(2,6)$
 $(4,6)$
 $(9,6)$
 $(2,8)$
 $(4,8)$
 $(9,8)$
 $\frac{1}{9}$
 $\frac{1}{9}$
 $\mathbb{P}[youwin] = \frac{5}{9}$

Problem 4: Intrasitive Dice

(b)
$$\mathbb{P}[you\ win] = \frac{5}{9}$$

(c)
$$\mathbb{P}[you\ win] = \frac{5}{9}$$

(d) Going second guarantees higher probability of winning