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Counting Intro
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Counting Intro

Order matters, with replacement

How many 2 letter sequence can be picked from the set {1, 2, 3, 4}, with replacement

(1,1} {1,2} (1,3} {14}

2,1} {2,2} {2,3} {2,4} 4 - 4 =16

(3,1} {32} (3,3} {34}

41} 42} 43 {44 o "




Counting Intro

Order matters, without replacement

How many 2 letter sequence can be picked from the set {1, 2, 3, 4}, without replacement

{1,1} 1{1,2} {1,3} ({1,4}

(2,13 {2,2} {2,3} {24} 4 -3 =12
(3,1} {32} {3,3} {3,4)
4,1} {42} {43} 44 n -m-1)-m—=2) - m—k+1)

n!
T (n—k)




Problem 1: Counting Intro |

n! 1
(a) = ’ Overcounting
n—k)! k!
52 51 50 49 ( )
4! ways Permutation
|4, 2, 3,4]
®
_ 52! 52! 1
Permutation space = 78 Combination space =

T 481 4!



Problem 1: Counting Intro |

(b) +1

10 10 10 10 10 10 10 10 10 10 =10'°

(c) Selecting from the set {C,0,V,E, R}

5 4 3 2 1 =23l
Easier example, anagram of AAB, i.e. selecting from the set {4,4, B} =1{A4,A,, B}

A,A,B  A,A,B AAB N
ABA,  A,BA, ABA = 5
BAlAZ BAZAl BAA



Problem 1: Counting Intro |

(c){B,E,R,K,E,L,E,Y}

8!
31
What about {B,B,E,R,K,E,L,E,Y}
8!
Permuting B —T 213} — Permuting E
Another perspective:
E E FEF B B
1 2 3 4 5 6 7 8
8!
Step 1: Pick 3 index for the 3 E's 3;5! 3| | 3|
. . ! — : C3 =
Step 2: Pick 2 index for the 2 Bs T 3151 213] 3! 130
Step 2: Permute the remainings 3!



Problem 1: Counting Intro |

(d) Choose 10 numbers from the set {1, 2, 3,4}, with replacement, order doesn’t matter

{1,1,1,1} [1,1,1, 1]

{2,1,1,1} {1,2,1,1} {1,1,1,2} {1,1,2,1} [1,1,1, 2]

/ Order matters Order not matters

The size is different!




Problem 1: Counting Intro |

(d) Choose 10 numbers from the set {1, 2, 3,4}, with replacement, order doesn’t matter

Order doesn’t matter = Can just store “counts”

1,1,1,1,1,1,1,1,1,1 = {1:10,2:0,3:0,4:0}
1,2,2,2,2,3,3,3,4,4] = {1:1,2:4,3:3,4:2)

1,2,2,2,2,4,4,4,4,4] = {1:1,2:4,3:0,4:5}

Let xq, X5, X3, X4 be the number of 1, 2, 3, 4 respectively
Count how many nonnegative solutions does
x1+X2 +X3 +X4 —_ 10

Has?



Problem 1: Counting Intro |

(d) Count the number of nonnegative solutions:
x1+x2 +x3 +X4 — 10

Consider 10 balls and 3 sticks, each configuration bijectively identifies to a solution

0000000000 & x,=10,%x=0,x3=0,x, =0

o0 0000606 0060 00 <~ X1 =2,X =4,X3 =2,x4 = 2

_ 13!
~ 10! 3!



Problem 3: Farmer’s Market

(@) Choose k elements from the set {4, P}
Same as counting the number of nonnegative solutions to
Xqg+xp =k

C(k+1)
k1 =k+1

(b) Choose k elements from the set {4, P, 0, E'}

Same as counting the number of nonnegative solutions to
XA‘l‘xP +xO +xE =k

_ (k+3)!
k13!




Problem 3: Farmer’s Market

(c) Choose k elements from the set {1, 2,3, ..., n}

Same as counting the number of nonnegative solutions to

x1+x2+"°+xn=k
_(k+n-1)!

k!l(n—1)!

Issue: We need at least two different kinds of fruits
We don’t want cases like

(k+n-—1)! L1l
_ Py — 1n (2,2, ...,2]

[n,n, ..., n]



Problem 4: The Count

(a) Sample with replacement]| order not matterjfrom the set {0, 1, 2, 3,4,5,6,7, 8,9}

For each sample there is only one way of arranging them in non-increasing manner

[9,3,2,1,0,0,0]

~(10+7-1! 16!
- 71(10—-1)! 719!

(b) Sample without replacement,|order not matter|from the set {0, 1, 2, 3,4, 5, 6,7, 8,9}

B 10! 10!
71(10=7)! 713!




Problem 4: The Count

(c) Casework on where the sequence of Os start
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Suppose start atindex 0

o o0 o0 0 O

I
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Problem 4: The Count

(c) Casework on where the sequence of Os start

Suppose start atindex 0

o o0 o0 0 O

I 2

Suppose start atindex 1

o 0 0 0 O

0
[~

If the first digit is O, then we’ve overcounted!



Problem 4: The Count

(c) Casework on where the sequence of Os start

Suppose start atindex 0

o o0 o0 0 O

I 2

Suppose start atindex 1

1 0 0 0 0 O

[~

If the first digit is O, then we’ve overcounted!



Problem 4: The Count

(c) Casework on where the sequence of Os start

Suppose start atindex 0

o o0 o0 0 O

I 2

Suppose start atindex 1

1 0 0 0 0 O

[~

If the first digit is O, then we’ve overcounted!



Problem 4: The Count

Suppose start at index 2

0 00 0 0 0 O

f

0 1 0 0 0 0 O

1 00 0 0 0 O

f

1 2 2

1 1 0 0 0 0 O

1 2 2



Problem 4: The Count

0O 0 0 O

2 2 =24
0O 0 0 0 O
T y) = 24
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