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Counting Intro



Counting Intro

How many 2 letter sequence can be picked from the set 1, 2, 3, 4 , with replacement

1, 1

Order matters, with replacement

1, 2 1, 3 1, 4

2, 1 2, 2 2, 3 2, 4

3, 1 3, 2 3, 3 3, 4

4, 1 4, 2 4, 3 4, 4

4 4⋅ = 16

…

𝑛 𝑛 𝑛 𝑛⋅ ⋅⋅ … = 𝑛𝑘



Counting Intro

How many 2 letter sequence can be picked from the set 1, 2, 3, 4 , without replacement

1, 1

Order matters, without replacement

1, 2 1, 3 1, 4

2, 1 2, 2 2, 3 2, 4

3, 1 3, 2 3, 3 3, 4

4, 1 4, 2 4, 3 4, 4

4 3⋅ = 12

…

𝑛 (𝑛 − 1) (𝑛 − 𝑘 + 1)⋅ …

=
𝑛!

(𝑛 − 𝑘)!

⋅ (𝑛 − 2)



Problem 1: Counting Intro I

(a)  

 
𝐴, 2, 3, 4

52 51 50 49

𝐴, 2, 4, 3

𝐴, 3, 2, 4

𝐴, 3, 4, 2

𝐴, 4, 2, 3

𝐴, 4, 3, 2

2, 𝐴, 3, 4

2, 𝐴, 4, 3

2, 3, 𝐴, 4

2, 3, 𝐴, 2

2, 4, 𝐴, 3

2, 4, 𝐴, 2

3, 𝐴, 2, 4

3, 𝐴, 4, 2

3, 2, 𝐴, 4

3, 2, 𝐴, 2

3, 4, 𝐴, 2

3, 4, 2, 𝐴

4, 𝐴, 2, 3

4, 𝐴, 3, 2

4, 2, 𝐴, 3

4, 2, 3, 𝐴

4, 3, 𝐴, 2

4, 3, 2, 𝐴

[𝐴, 2, 3, 4]

Permutation space Combination space=
52!

48!
=

52!

48!
⋅

1

4!

4! ways

=
𝑛!

(𝑛 − 𝑘)!
⋅

1

𝑘!

Permutation

 

Overcounting

 



Problem 1: Counting Intro I

(b)

 
10

+1

10 10 10 10 10 10 10 10 10 = 1010

(c) Selecting from the set 𝐶, 𝑂, 𝑉, 𝐸, 𝑅  

5 4 3 2 1 = 5!

Easier example, anagram of 𝐴𝐴𝐵, i.e. selecting from the set  𝐴, 𝐴, 𝐵  

𝐴1𝐴2𝐵

 

= 𝐴1, 𝐴2, 𝐵

𝐴2𝐴1𝐵

 

𝐴1𝐵𝐴2

 

𝐴2𝐵𝐴1

 

𝐵𝐴1𝐴2

 

𝐵𝐴2𝐴1

 

𝐴𝐴𝐵

 

𝐴𝐵𝐴

 

𝐵𝐴𝐴

=
3!

2!



Problem 1: Counting Intro I

Another perspective: 

(c) 𝐵, 𝐸, 𝑅, 𝐾, 𝐸, 𝐿, 𝐸, 𝑌  

=
8!

3! 5!
⋅

5!

2! 3!
⋅ 3! =

8!

2! 3!

What about 𝐵, 𝐵, 𝐸, 𝑅, 𝐾, 𝐸, 𝐿, 𝐸, 𝑌  

=
8!

2! ⋅ 3!

Step 1: Pick 3 index for the 3 𝐸s  

1 2 3 4 5 6 7

Step 2: Permute the remainings

𝐸 𝐸 𝐸

8!

3! 5!

3!

=
8!

3!

Permuting 𝐵 Permuting 𝐸 

Step 2: Pick 2 index for the 2 𝐵s  5!

2! 3!

8

𝐵 𝐵



Problem 1: Counting Intro I

Choose 10 numbers from the set {1, 2, 3, 4}, with replacement, order doesn’t matter (d)

{1, 1, 1, 1}

 
{2, 1, 1, 1}

 

{1, 2, 1, 1}

 

{1, 1, 2, 1}

 

{1, 1, 1, 2}

[1, 1, 1, 1]

 
[1, 1, 1, 2]

Order matters

 

Order not matters

 
The size is different!

 

4 4 4 4 4 4 4 4 4 4



Problem 1: Counting Intro I

Choose 10 numbers from the set {1, 2, 3, 4}, with replacement, order doesn’t matter (d)

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

 [1, 2, 2, 2, 2, 3, 3, 3, 4, 4]

 [1, 2, 2, 2, 2, 4, 4, 4, 4, 4]

Order doesn’t matter  ⟹  Can just store “counts”

⟹

⟹

⟹

{1: 10, 2: 0, 3: 0, 4: 0}

{1: 1, 2: 4, 3: 3, 4: 2}

{1: 1, 2: 4, 3: 0, 4: 5}

Let 𝑥1, 𝑥2, 𝑥3, 𝑥4 be the number of 1, 2 , 3, 4 respectively

Count how many nonnegative solutions does 

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 10 

Has?



Problem 1: Counting Intro I

(d) Count the number of nonnegative solutions:

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 10 

Consider 10 balls and 3 sticks, each configuration bijectively identifies to a solution

⟺ 𝑥1 = 10, 𝑥2 = 0, 𝑥3 = 0, 𝑥4 = 0

⟺ 𝑥1 = 2, 𝑥2 = 4, 𝑥3 = 2, 𝑥4 = 2

=
13!

10! 3!

𝑥1 𝑥2 𝑥3 𝑥4



Problem 3: Farmer’s Market

(a) Choose k elements from the set {𝐴, 𝑃} 

𝑥𝐴 + 𝑥𝑃 = 𝑘 

Same as counting the number of nonnegative solutions to

=
(𝑘 + 1)!

𝑘! 1!
= 𝑘 + 1

(b) Choose k elements from the set {𝐴, 𝑃, 𝑂, 𝐸} 

Same as counting the number of nonnegative solutions to

𝑥𝐴 + 𝑥𝑃 + 𝑥𝑂 + 𝑥𝐸 = 𝑘 

=
(𝑘 + 3)!

𝑘! 3!



Problem 3: Farmer’s Market

(c) Choose k elements from the set {1, 2, 3, … , 𝑛} 

𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛 = 𝑘 

Same as counting the number of nonnegative solutions to

=
(𝑘 + 𝑛 − 1)!

𝑘! (𝑛 − 1)!

Issue: We need at least two different kinds of fruits 

=
(𝑘 + 𝑛 − 1)!

𝑘! (𝑛 − 1)!
− 𝑛

We don’t want cases like

[1, 1, … , 1]

[2, 2, … , 2]

[𝑛, 𝑛, … , 𝑛]

…



Problem 4: The Count 

(a) Sample with replacement, order not matter from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

For each sample there is only one way of arranging them in non-increasing manner

[9, 3, 2, 1, 0, 0, 0]

=
10 + 7 − 1 !

7! 10 − 1 !
=

16!

7! 9!

Sample without replacement, order not matter from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}(b)

=
10!

7! 10 − 7 !
=

10!

7! 3!



Problem 4: The Count 

(c) Casework on where the sequence of 0s start



Problem 4: The Count 

(c) Casework on where the sequence of 0s start

Suppose start at index 0 

0 0 0 0 0



Problem 4: The Count 

(c) Casework on where the sequence of 0s start

Suppose start at index 0 

0 0 0 0 0

2 2 2 2 2



Problem 4: The Count 
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Suppose start at index 0 

0 0 0 0 0

2 2 2 2 2 = 25 = 32



Problem 4: The Count 
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Suppose start at index 0 

0 0 0 0 0

2 2 2 2 2 = 25 = 32

Suppose start at index 1 

00 0 0 0



Problem 4: The Count 

(c) Casework on where the sequence of 0s start

Suppose start at index 0 

0 0 0 0 0

2 2 2 2 2 = 25 = 32

Suppose start at index 1 

00 0 0 0
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Problem 4: The Count 

(c) Casework on where the sequence of 0s start

Suppose start at index 0 

0 0 0 0 0

2 2 2 2 2 = 25 = 32

Suppose start at index 1 

00 0 0 0

2 2 2 2 2

0



Problem 4: The Count 

(c) Casework on where the sequence of 0s start

Suppose start at index 0 

0 0 0 0 0

2 2 2 2 2 = 25 = 32

Suppose start at index 1 

00 0 0 0

2 2 2 2 2

If the first digit is 0, then we’ve overcounted!

0



Problem 4: The Count 

(c) Casework on where the sequence of 0s start

Suppose start at index 0 

0 0 0 0 0

2 2 2 2 2 = 25 = 32

Suppose start at index 1 

00 0 0 0

2 2 2 2

If the first digit is 0, then we’ve overcounted!

1



Problem 4: The Count 

(c) Casework on where the sequence of 0s start

Suppose start at index 0 

0 0 0 0 0

2 2 2 2 2 = 25 = 32

Suppose start at index 1 

00 0 0 0

2 2 2 2

If the first digit is 0, then we’ve overcounted!

1

= 24 = 16



Problem 4: The Count 

Suppose start at index 2 

0 00 0 0

2 2 2 2 2 = 24 = 16

1

0 00 0 0

2 2 2

110 00 0 0

2 2 2

01

0 00 0 0

2 2 2

00 0 00 0 0

2 2 2

10



Problem 4: The Count 

0 0 0

2 2 2

00

2 2

0 0 0

2 2 2

01

2

0

0 0 0

2 2 2

01
2

0

00 0
2 2 2

01
2

0

0 00
2 2 2

01
2

0

0 0 0
2 2 2

01
2

0

= 25

= 24

= 24

= 24

= 24

= 24

= 25 + 5 ⋅ 24
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