Polynomials and Secret Sharing

CS 70 Discussion 4B

Raymond Tsao

2025-02-21

Note: These slides are unofficial course materials. Please use the notes as the only single source of truth.

(a) Find polynomial $p_{-1}(x)$ with roots at x=0,1 and passes through (-1,1)

For simplicity, let's ignore (mod 5)

Recall that if polynomial f has roots at x = a

$$f(x) = (x - a) \cdot q(x)$$

$$p_{-1}(x) = k(x-0)(x-1)$$

Since it passes through (-1,1), we can solve for k

$$p_{-1}(x) = \frac{(x-0)(x-1)}{(-1-0)(-1-1)}$$
Ensure that $p_{-1}(-1) = 1$

$$a \equiv 1 \pmod{3}$$

$$a \equiv 0 \pmod{5}$$

$$a \equiv 0 \pmod{5}$$
$$a \equiv 0 \pmod{7}$$

$$p_{-1}(-1) = 1$$

$$p_{-1}(0) = 0$$

$$p_{-1}(1) = 0$$

Step 1: Combine equation with zeros (divisibility argument)

$$a = 5 \cdot 7 \cdot k$$

$$p_{-1}(x) = x \cdot (x - 1) \cdot k$$

Step 2: Solve for *k*

$$a = 5 \cdot 7 \cdot k \equiv 1 \pmod{3}$$

$$1 = p_{-1}(-1)$$
$$= (-1 - 0) \cdot (-1 - 1) \cdot k$$

(b) Find polynomial $p_0(x)$ with roots at x=-1,1 and passes through (0,1)

$$p_0(x) = k(x+1)(x-1)$$

$$p_0(x) = \frac{(x+1)(x-1)}{(0+1)(0-1)}$$

(c) Find polynomial $p_1(x)$ with roots at x=-1,0 and passes through (1,1)

$$p_1(x) = k(x+1)(x-0)$$

$$p_1(x) = \frac{(x+1)(x-0)}{(1+1)(1-0)}$$

Caveat: We are working in (mod 5)!

Solution: Take (mod 5) of every number

$$p_{-1}(x) = \frac{(x-0)(x-1)}{(-1-0)(-1-1)} = 2^{-1}(x-0)(x-1) = 3x(x-1)$$

$$p_0(x) = \frac{(x+1)(x-1)}{(0+1)(0-1)} = (-1)^{-1}(x+1)(x-1) = 4(x+1)(x-1)$$

$$p_1(x) = \frac{(x+1)(x-0)}{(1+1)(1-0)} = 2^{-1}(x+1)(x-0) = 3x(x+1)$$

CRT:

$$x \equiv 1 \pmod{3}$$
 $a \equiv 1 \pmod{3}$ $b \equiv 0 \pmod{3}$ $c \equiv 0 \pmod{3}$ $x \equiv 3 \pmod{5}$ $= 1 \cdot a \equiv 0 \pmod{5}$ $+3 \cdot b \equiv 1 \pmod{5}$ $+4 \cdot c \equiv 0 \pmod{5}$ $x \equiv 4 \pmod{7}$ $a \equiv 0 \pmod{7}$ $b \equiv 0 \pmod{7}$ $c \equiv 1 \pmod{7}$

Now we have:

$$p(-1) = 3$$
 $p_{-1}(-1) = 1$ $p_{0}(-1) = 0$ $p_{1}(-1) = 0$ $p(0) = 1$ $p_{0}(-1) = 0$ $p_{0}(0) = 1$ $p_{0}(0) = 1$ $p_{0}(0) = 0$ $p_{0}(1) = 0$ $p_{0}(1) = 1$ $p_{0}(1) = 1$

So
$$p(x) = 3p_{-1}(x) + p_0(x) + 2p_1(x)!$$

Suppose there are 5 people. Devise a scheme such that

- Any group of 3 people can unlock the secret s
- Any group with < 3 people cannot unlock the secret s

Idea: 3 points specify a unique polynomial of degree at most 2 Let P be degree 2 polynomial, with P(0) = s

1 2 3 4 5

• • • • • • • • • •
$$P(1)$$
 $P(2)$ $P(3)$ $P(4)$ $P(5)$

$$n = 5$$
 people

Example: Suppose s = 1, define $P(x) = x^2 - 5x + 1$

(a) What if we only considered the first condition?

Consider any polynomial P of degree 192, with P(0) = s

Need 193 points to reconstruct P

- Case 1: Need all 193 countries to get 193 points
- Case 2: 55 countries (55 points) + UN Secretary

We need 193 points, but only got 55 points!

193 - 55 points

(b) Idea: We encode the P(i) as a secret as well! Consider any polynomial Q of degree 12, with Q(0) = P(1)

