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Problem 1: Extended Euclid: Two Ways

(a) Solving mod equation is equivalent as finding integer solution to linear equation

17𝑥 ≡ 1 𝑚𝑜𝑑 54 17𝑥 + 54𝑦 = 1
⟺

Solve for 𝑥 Find integer solution 𝑥, 𝑦 

Problem 1 Problem 2

If I can solve Problem 1 (i.e. I can find 𝑥∗ satisfying 17𝑥∗ ≡ 1 𝑚𝑜𝑑 54 )

 
54 | 17𝑥∗ − 1 ⟹ 𝑦∗ = (17𝑥∗ − 1)/54

If I can solve Problem 2 (i.e. I can find 𝑥∗, 𝑦∗ s.t. 17𝑥∗ + 54𝑦∗ = 1)

 
17𝑥∗ + 54𝑦∗ ≡ 1 𝑚𝑜𝑑 54

0

⟹ 17𝑥∗ ≡ 1 𝑚𝑜𝑑 54



Problem 1: Extended Euclid: Two Ways

a𝑥 ≡ 𝑘 𝑚𝑜𝑑 𝑏 a𝑥 + 𝑏𝑦 = 𝑘
⟺

Solve for 𝑥 Find integer solution 𝑥, 𝑦 

a𝑥 + 𝑏𝑦 = 𝑘 has a solution 

if and only if gcd 𝑎, 𝑏 |𝑘 

Solving mod equation is equivalent as finding integer solution to linear equation

⟹: Suppose a𝑥 + 𝑏𝑦 = 𝑘 has integer solution

gcd 𝑎, 𝑏  divides 𝑎, 𝑏, so gcd 𝑎, 𝑏  divides 𝑘  

⟸: Suppose gcd 𝑎, 𝑏 |𝑘, how to find a solution? 

Step 1: We can always solve 𝑎𝑥 + 𝑏𝑦 = gcd(𝑎, 𝑏) Extended Euclid Algorithm

Step 2: 𝑎 𝑚𝑥 + 𝑏 𝑚𝑦 = m ⋅ gcd(𝑎, 𝑏)
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(b, c) Method 1: Recursive Approach
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quotient remainder
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54 = 3 ⋅ 17 + 3

17 =  5 ⋅ 3 + 2
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(b, c) Method 1: Recursive Approach

54 = 3 ⋅ 17 + 3

17 =  5 ⋅ 3 + 2

3 =  1 ⋅ 2 + 1 1 = 3 − 1 ⋅ 2

2 = 17 − 5 ⋅ 3

3 = 54 − 3 ⋅ 17

1 = 3 − 1 ⋅ (17 − 5 ⋅ 3)

= −1 ⋅ 17 + 6 ⋅ 3

gcd 𝑎, 𝑏 = gcd(𝑏, 𝑟)

gcd 54, 17

1 = −1 ⋅ 17 + 6 ⋅

= −19 ⋅ 17 + 6 ⋅ 54

(54 − 3 ⋅ 17)

quotient remainder

a = 𝑞 ⋅ 𝑏 + 𝑟

Forward: Find gcd 54, 17  Backward

This method allows us to solve 𝑎𝑥 + 𝑏𝑦 = gcd(𝑎, 𝑏)



Problem 1: Extended Euclid: Two Ways

(d) Method 2: Iterative Approach

54 = ⋅ 54 + ⋅ 17 

17 = ⋅ 54 + ⋅ 17 

1 0

0 1

(𝐸1) 

(𝐸2) 

3 = ⋅ 54 + ⋅ 17 𝐸3 = (𝐸1) − 3(𝐸2) 1 −3

2 = ⋅ 54 + ⋅ 17 𝐸4 = (𝐸2) − 5(𝐸3) −5 16

1 = ⋅ 54 + ⋅ 17 6 −19 𝐸5 = (𝐸3) − (𝐸4) 



Problem 1: Extended Euclid: Two Ways

a𝑥 ≡ 𝑘 𝑚𝑜𝑑 𝑏 a𝑥 + 𝑏𝑦 = 𝑘
⟺

Solve for 𝑥 Find integer solution 𝑥, 𝑦 

Solving mod equation is equivalent as finding integer solution to linear equation

54𝑥 ≡ 2 𝑚𝑜𝑑 32 ⟺ 54𝑥 + 32𝑦 = 2

• Check: gcd 54, 32 |2, so there exists a solution

• Use Extended Euclid to find the solution 

54 = 1 ⋅ 54 + 0 ⋅ 32

32 = 0 ⋅ 54 + 1 ⋅ 32

22 = 1 ⋅ 54 − 1 ⋅ 32

10 = −1 ⋅ 54 + 2 ⋅ 32

2 = 3 ⋅ 54 − 5 ⋅ 32

𝐸1

𝐸2

𝐸3 = 𝐸1 − 𝐸2

𝐸4 = 𝐸2 − 𝐸3

𝐸5 = 𝐸3 − 2𝐸4

• 54(3) + 32(−5) = 2

• 54(3) ≡ 2 𝑚𝑜𝑑 32



Problem 2: Chinese Remainder Theorem Practice

𝑥 ≡ 1 (𝑚𝑜𝑑 3)

𝑥 ≡ 3 (𝑚𝑜𝑑 7)

𝑥 ≡ 4 (𝑚𝑜𝑑 11)

𝑥 ≡

1

3

4

(𝑚𝑜𝑑 3)

(𝑚𝑜𝑑 7)

(𝑚𝑜𝑑 11)

a)

1

0

0

(𝑚𝑜𝑑 3)

(𝑚𝑜𝑑 7)

(𝑚𝑜𝑑 11)

0

1

0

(𝑚𝑜𝑑 3)

(𝑚𝑜𝑑 7)

(𝑚𝑜𝑑 11)

0

0

1

(𝑚𝑜𝑑 3)

(𝑚𝑜𝑑 7)

(𝑚𝑜𝑑 11)

𝑎 𝑏 𝑐

Suppose we have three “basis” solution
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𝑥 ≡ 1 (𝑚𝑜𝑑 3)

𝑥 ≡ 3 (𝑚𝑜𝑑 7)

𝑥 ≡ 4 (𝑚𝑜𝑑 11)

𝑥 ≡

1

3

4

(𝑚𝑜𝑑 3)

(𝑚𝑜𝑑 7)

(𝑚𝑜𝑑 11)

a)

1

0

0

0

1

0

0

0

1

𝑎 𝑏 𝑐

1

3

4

𝑥

+ + =1 3 4



Problem 2: Chinese Remainder Theorem Practice

𝑎 ≡ 1 (𝑚𝑜𝑑 3)

𝑎 ≡ 0 (𝑚𝑜𝑑 7)

𝑎 ≡ 0 (𝑚𝑜𝑑 11)

Step 1: From (2) and (3)  
𝑎 = 7 ⋅ 11 ⋅ 𝑘

b) Solve

Step 2: Plug in (1)

7 ⋅ 11 ⋅ 𝑘 ≡ 1 (𝑚𝑜𝑑 3) 2𝑘 ≡ 1 (𝑚𝑜𝑑 3)

𝑘 ≡ 2 (𝑚𝑜𝑑 3)

Step 3: Solve!

𝑘 ≡ 3𝑚 + 2
Step 4:

𝑎 = 7 ⋅ 11 ⋅ 3𝑚 + 2 = 3 ⋅ 7 ⋅ 11𝑚 + 154

(1)

(2)

(3)

⟹

⟹



Problem 2: Chinese Remainder Theorem Practice

𝑏 ≡ 0 (𝑚𝑜𝑑 3)

𝑏 ≡ 1 (𝑚𝑜𝑑 7)

𝑏 ≡ 0 (𝑚𝑜𝑑 11)

Step 1: From (1) and (3)  
𝑏 = 3 ⋅ 11 ⋅ 𝑘

c) Solve

Step 2: Plug in (2)

3 ⋅ 11 ⋅ 𝑘 ≡ 1 (𝑚𝑜𝑑 7) 5𝑘 ≡ 1 (𝑚𝑜𝑑 7)

𝑘 ≡ 3 (𝑚𝑜𝑑 7)

Step 3: Solve!

𝑘 ≡ 7𝑚 + 3
Step 4:

𝑏 = 3 ⋅ 11 ⋅ 7𝑚 + 3 = 3 ⋅ 7 ⋅ 11𝑚 + 99

(1)

(2)

(3)

⟹

⟹



Problem 2: Chinese Remainder Theorem Practice

𝑏 = 3 ⋅ 7 ⋅ 11𝑚 + 99 ≡ 99 (𝑚𝑜𝑑 3 ⋅ 7 ⋅ 11)

e) Now we have

𝑎 = 3 ⋅ 7 ⋅ 11𝑚 + 154 ≡ 154 (𝑚𝑜𝑑 3 ⋅ 7 ⋅ 11)

𝑐 = 3 ⋅ 7 ⋅ 11𝑚 + 210 ≡ 210 (𝑚𝑜𝑑 3 ⋅ 7 ⋅ 11)

𝑥 = 𝑎 + 3𝑏 + 4𝑐 = 154 + 3 99 + 4 210 ≡ 1291 (𝑚𝑜𝑑 3 ⋅ 7 ⋅ 11)



Problem 2: Chinese Remainder Theorem Practice

𝑥 ≡ 𝑎1 (𝑚𝑜𝑑 𝑛1)

𝑥 ≡ 𝑎2 (𝑚𝑜𝑑 𝑛2)

𝑥 ≡ 𝑎3 (𝑚𝑜𝑑 𝑛3)

(1)

(2)

(3)

In general

1

0

0

0

1

0

0

0

1

𝑏1 𝑏2 𝑏3

𝑎1

𝑎2

𝑎3

𝑥

+ + =𝑎1 𝑎2 𝑎3

𝑥 = 𝑎1𝑏1 + 𝑎2𝑏3 + 𝑎3𝑏3 = ෍

𝑖=1

3

𝑎𝑖𝑏𝑖



Problem 2: Chinese Remainder Theorem Practice

𝑎 ≡ 1 (𝑚𝑜𝑑 3)

𝑎 ≡ 0 (𝑚𝑜𝑑 7)

𝑎 ≡ 0 (𝑚𝑜𝑑 11)

Step 1: From (2) and (3)  𝑎 = 7 ⋅ 11 ⋅ 𝑘

Solve

Step 2: Plug in (1)

7 ⋅ 11 ⋅ 𝑘 ≡ 1 (𝑚𝑜𝑑 3)

𝑘 ≡ 2 (𝑚𝑜𝑑 3)

Step 3: Solve!

𝑘 ≡ 3𝑚 + 2
Step 4:

𝑎 = 7 ⋅ 11 ⋅ 3𝑚 + 2 = 3 ⋅ 7 ⋅ 11𝑚 + 7 ⋅ 11 ⋅ 2

(1)

(2)

(3)

⟹

𝑁/𝑛1𝑁

𝑘 ≡ 1 (𝑚𝑜𝑑 𝑛1)(𝑁/𝑛1)

𝑘 =
𝑁

𝑛1

−1

 (𝑚𝑜𝑑 𝑛1)
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