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Look for patterns
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Problem 1: Party Tricks

a) Last digit of 113142

Look for patterns

• 111 ≡ 11 ≡ 1 (𝑚𝑜𝑑 10)

• 112 ≡ 121 ≡ 1 𝑚𝑜𝑑 10

• 113 ≡ 1331 ≡ 1 (𝑚𝑜𝑑 10)

Trick: Take mod to the base

113142 ≡ 11 𝑚𝑜𝑑 10 3142 ≡ 13142 ≡ 1 (𝑚𝑜𝑑 10)

𝑎𝑏 ≡ (𝑎 𝑚𝑜𝑑 𝑚)𝑏  (𝑚𝑜𝑑 𝑚) 𝑎𝑏 ≢ 𝑎𝑏 (𝑚𝑜𝑑 𝑚) (𝑚𝑜𝑑 𝑚)

Need to reevaluate the whole thing!

⋅ 11 ⋅ 11

⟹

112  ≡ 1 (𝑚𝑜𝑑 10)

113 ≡ 11 (𝑚𝑜𝑑 10)

This is something you CAN do! You CANNOT do this to exponents!



Problem 1: Party Tricks

b) Last digit of 99999

Look for patterns

• 91 ≡ 9 ≡ 9 (𝑚𝑜𝑑 10)

• 92 ≡ 9 ⋅ 9 ≡ 1 𝑚𝑜𝑑 10

• 93 ≡ 9 ⋅ 1 ≡ 9 (𝑚𝑜𝑑 10)

Enters a cycle of length 2

Apply mod to the base?

99999 ≡ 9 𝑚𝑜𝑑 10 9999 ≡ −1 9999 ≡ −1 ≡ 9 (𝑚𝑜𝑑 10)

−3 − 2 − 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Gap of 10Gap of 10



Problem 1: Party Tricks

c) Last digit of 3641

Look for patterns

• 31 ≡ 3 ≡ 3 (𝑚𝑜𝑑 10)

• 32 ≡ 3 ⋅ 3 ≡ 9 𝑚𝑜𝑑 10

• 33 ≡ 3 ⋅ 9 ≡ 7 (𝑚𝑜𝑑 10)

• 34 ≡ 3 ⋅ 7 ≡ 1 𝑚𝑜𝑑 10

• 35 ≡ 3 ⋅ 1 ≡ 3 (𝑚𝑜𝑑 10)

Enters a cycle of length 4

So 

3641 ≡ 3 (𝑚𝑜𝑑 10)



Problem 3: Modular Inverses

a) Is 3 an inverse of 5 modulo 14?

So yes

3 ⋅ 5 ≡ 15 ≡ 1 (𝑚𝑜𝑑 14)

b) Is 3 an inverse of 5 modulo 10?

So no

3 ⋅ 5 ≡ 15 ≡ 5 (𝑚𝑜𝑑 10)

c) Is 3 + 14𝑛 an inverse of 5 modulo 14?

3 + 14𝑛 ⋅ 5 ≡ 15 + 14 ⋅ 5𝑛 ≡ 15 (𝑚𝑜𝑑 14)

So yes Equivalence class!



Problem 3: Modular Inverses

d) Does 4 has an inverse modulo 8?

Brute force:

• 4 ⋅ 1 ≡ 4 𝑚𝑜𝑑 8

• 4 ⋅ 2 ≡ 0 𝑚𝑜𝑑 8

• 4 ⋅ 3 ≡ 4 𝑚𝑜𝑑 8

• 4 ⋅ 4 ≡ 0 𝑚𝑜𝑑 8  .....

Cycle of length 2

4𝑥 ≡ 1 𝑚𝑜𝑑 8

Bad idea if we’re dealing with modulo 10000!

Finding inverse (solving mod equation) is the same as solving linear diophantine equation

4𝑥 + 8𝑦 = 1⟺

Solve for 𝑥 Find integer solution 𝑥, 𝑦 



Problem 3: Modular Inverses

4𝑥 ≡ 1 𝑚𝑜𝑑 8

Finding inverse (solving mod equation) is the same as solving diophantine equation

4𝑥 + 8𝑦 = 1⟺

Solve for 𝑥 Find integer solution 𝑥, 𝑦 

4𝑥 ≡ 1 𝑚𝑜𝑑 8  ⟺  8 | 4𝑥 − 1

⟺  4𝑥 − 1 = −8𝑦

⟺  4𝑥 + 8𝑦 = 1

Why?

Definition on mod

Definition of divisibility

Does not have any solutions!

Divisible by 4 Not divisible by 4
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Solve for 𝑥 Find integer solution 𝑥, 𝑦 
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Why is this helpful?



Problem 3: Modular Inverses

a𝑥 ≡ 𝑘 𝑚𝑜𝑑 𝑏

Finding inverse (solving mod equation) is the same as solving diophantine equation

a𝑥 + 𝑏𝑦 = 𝑘⟺

Solve for 𝑥 Find integer solution 𝑥, 𝑦 

Why is this helpful?

A: We know when the solution and how to find them for linear diophantine equation!
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a𝑥 + 𝑏𝑦 = 𝑘 has a solution 

if and only if gcd 𝑎, 𝑏 |𝑘 



Problem 3: Modular Inverses

a𝑥 ≡ 𝑘 𝑚𝑜𝑑 𝑏

Finding inverse (solving mod equation) is the same as solving diophantine equation

a𝑥 + 𝑏𝑦 = 𝑘⟺

Solve for 𝑥 Find integer solution 𝑥, 𝑦 

a𝑥 + 𝑏𝑦 = 𝑘 has a solution 

if and only if gcd 𝑎, 𝑏 |𝑘 

a𝑥 ≡ 𝑘 (𝑚𝑜𝑑 𝑏) has a solution 

if and only if gcd 𝑎, 𝑏 |𝑘 
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Problem 3: Modular Inverses

a𝑥 ≡ 𝑘 𝑚𝑜𝑑 𝑏

Finding inverse (solving mod equation) is the same as solving diophantine equation

a𝑥 + 𝑏𝑦 = 𝑘⟺

Solve for 𝑥 Find integer solution 𝑥, 𝑦 

a𝑥 + 𝑏𝑦 = 𝑘 has a solution 

if and only if gcd 𝑎, 𝑏 |𝑘 

a𝑥 ≡ 𝑘 (𝑚𝑜𝑑 𝑏) has a solution 

if and only if gcd 𝑎, 𝑏 |𝑘 
⟺

a𝑥 ≡ 1 (𝑚𝑜𝑑 𝑏) has a solution 

if and only if gcd 𝑎, 𝑏 |1 



Problem 3: Modular Inverses

a𝑥 ≡ 𝑘 𝑚𝑜𝑑 𝑏

Finding inverse (solving mod equation) is the same as solving diophantine equation

a𝑥 + 𝑏𝑦 = 𝑘⟺

Solve for 𝑥 Find integer solution 𝑥, 𝑦 

a𝑥 + 𝑏𝑦 = 𝑘 has a solution 

if and only if gcd 𝑎, 𝑏 |𝑘 

a𝑥 ≡ 𝑘 (𝑚𝑜𝑑 𝑏) has a solution 
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a𝑥 ≡ 1 (𝑚𝑜𝑑 𝑏) has a solution 

if and only if gcd 𝑎, 𝑏 |1 
Condition for whether an inverse exists!



Problem 3: Modular Inverses

a𝑥 ≡ 𝑘 𝑚𝑜𝑑 𝑏

Finding inverse (solving mod equation) is the same as solving diophantine equation

a𝑥 + 𝑏𝑦 = 𝑘⟺

Solve for 𝑥 Find integer solution 𝑥, 𝑦 

a𝑥 + 𝑏𝑦 = 𝑘 has a solution 

if and only if gcd 𝑎, 𝑏 |𝑘 

a𝑥 ≡ 𝑘 (𝑚𝑜𝑑 𝑏) has a solution 

if and only if gcd 𝑎, 𝑏 |𝑘 
⟺

a𝑥 ≡ 1 (𝑚𝑜𝑑 𝑏) has a solution 

if and only if gcd 𝑎, 𝑏 |1 
Condition for whether an inverse exists!

The only missing puzzle!



Problem 3: Modular Inverses

e)  Can 𝑎𝑥 ≡ 𝑎𝑥′ (𝑚𝑜𝑑 𝑚)

𝑎 𝑥 − 𝑥′ ≡ 0 (𝑚𝑜𝑑 𝑚) 

This tells us that inverses are unique in mod space!

𝑎 𝑥 − 𝑥′ ≡  0 (𝑚𝑜𝑑 𝑚) 𝑥 ⋅𝑥 ⋅

𝑥 − 𝑥′ ≡  0 (𝑚𝑜𝑑 𝑚) 

𝑥 ≡ 𝑥′ (𝑚𝑜𝑑 𝑚) 



Problem 2: Modular Potpourri

a)  There exists some 𝑥 such that 𝑥 ≡ 3 (𝑚𝑜𝑑 16) and 𝑥 ≡ 4 (𝑚𝑜𝑑 6)   

Solving modular equation is the same as solving linear diophantine equation

𝑥 ≡ 3 (𝑚𝑜𝑑 16) 

3 + 16𝑘1 = 4 + 6𝑘2

𝑥 ≡ 3 + 16𝑘1 

𝑥 ≡ 4 (𝑚𝑜𝑑 6) 𝑥 ≡ 4 + 6𝑘2 

16𝑘1 − 6𝑘2 = 1

Divisible by 2 Not divisible by 2

⟹
 
⟹
 



Problem 2: Modular Potpourri

b, c) 2𝑥 ≡ 4 𝑚𝑜𝑑 12  ⟺  𝑥 ≡ 2 𝑚𝑜𝑑 12

2𝑥 ≡ 4 (𝑚𝑜𝑑 12) 2𝑥 = 4 + 12𝑦

𝑥 = 2 + 6𝑦𝑥 ≡ 2 (𝑚𝑜𝑑 6) 

⟺

⟺
⟹

False, counter-example: 𝑥 = 8
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