Probability Theory

CS 70 Discussion 10A

Raymond Tsao

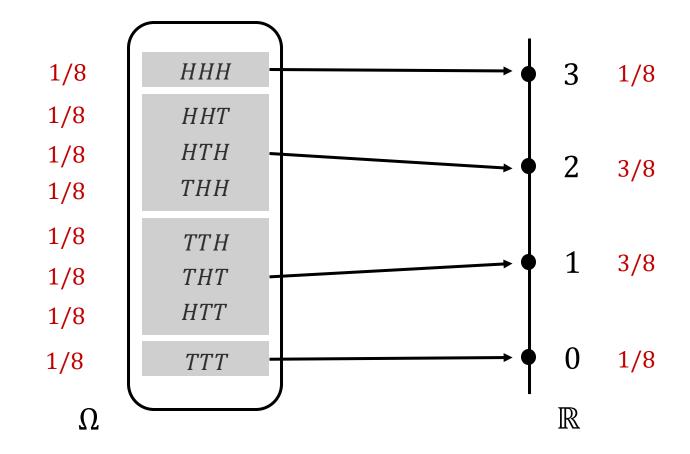
2025-04-04

Note: These slides are unofficial course materials. Please use the notes as the only single source of truth.

Random Variables

Recall: A probability space consists of a space space Ω and a probability function $\mathbb P$

A random variable: $X: \Omega \to \mathbb{R}$ induces a distribution over \mathbb{R}



Bernoulli v.s Binomial Distribution

Bernoulli distribution: simple model of one coin toss $X \in \{0, 1\}$

Parameters: p (success rate)

$$\mathbb{P}[X=0] = 1 - p$$

$$\mathbb{P}[X=1]=p$$

Binomial distribution: simple model of n coin toss $X \in \{0, 1\}$

Parameters: p (success rate), n (number of coin tosses)

$$\mathbb{P}[X=k] = \binom{n}{k} p^k (1-p)^{n-k}$$

Problem 1: Head Count

(a) What is the probability that we get k heads (success)?

Any sequence with exactly k heads (so 20 - k tails) occurs with probability:

$$\left(\frac{2}{5}\right)^k \left(\frac{3}{5}\right)^{20-k}$$

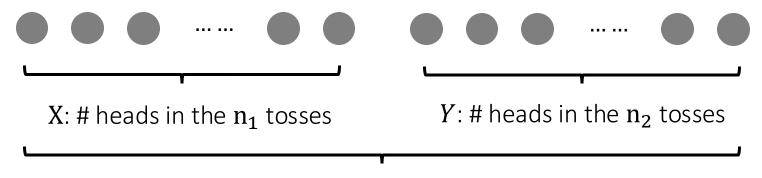
How many such sequences are there?

How many ways we can permute a sequence with k heads and 20 - k tails?

$$\mathbb{P}[X=k] = \binom{20}{k} \left(\frac{2}{5}\right)^k \left(\frac{3}{5}\right)^{20-k}$$

Problem 1: Head Count

(e) If $X \sim Bin(n_1, p)$, $Y \sim Bin(n_2, p)$, what is the distribution of X + Y?



X + Y: # heads in the $n_1 + n_2$ tosses

We expect $X + Y \sim Bin(n_1 + n_2, p)! \leftarrow \# \text{ heads in the } n_1 + n_2 \text{ tosses}$

How to find the distribution of X?

- Way 1: Find a formula for $\mathbb{P}[X = k]$
- Way 2: Find a formula for $\mathbb{P}[X \le k]$ $\mathbb{P}[X = k] = \mathbb{P}[X \le k] \mathbb{P}[X \le k 1]$

Problem 1: Head Count

(e) Let
$$Z = X + Y$$

$$\mathbb{P}[Z = k] = \mathbb{P}[X + Y = k]$$

$$= \sum_{i=0}^{k} \mathbb{P}[X = i, Y = k - i] = \sum_{i=0}^{k} \mathbb{P}[X = i] \mathbb{P}[Y = k - i]$$

$$= \sum_{i=0}^{k} {n_1 \choose i} p^i (1 - p)^{n-i} \cdot {n_2 \choose k-i} p^{k-i} (1 - p)^{n-(k-i)}$$

$$= {n_1 + n_2 \choose k} p^k (1 - p)^{n_1 + n_2 - k}$$

Binomial distribution: Given n coin tosses, probability of k successes

Geometric distribution: Number of coin tosses until we get one success

Parameters: p (success rate)

$$\mathbb{P}[X=k] = (1-p)^{k-1}p$$

(a) If
$$p = 3/4$$

$$\mathbb{P}[X=k] = \left(\frac{1}{4}\right)^{k-1} \cdot \frac{3}{4}$$

(c)
$$\mathbb{P}[X > k]$$

$$\mathbb{P}[X > k] = \sum_{i=k+1}^{\infty} \mathbb{P}[X = i]$$

$$= \sum_{i=k+1}^{\infty} \left(\frac{1}{4}\right)^{i-1} \cdot \frac{3}{4}$$

$$= \left(\frac{1}{4}\right)^{k}$$

Need more than k toss to get one successes \iff First k tosses must be fails

(e) Memoryless property: $\mathbb{P}[X > k | X > m]$

$$\mathbb{P}[X > k | X > m] = \frac{\mathbb{P}[X > k, X > m]}{\mathbb{P}[X > m]}$$
$$= \frac{\mathbb{P}[X > k]}{\mathbb{P}[X > m]}$$
$$= \left(\frac{1}{4}\right)^{k-m}$$

(f) Find the distribution of $Z = \min\{X, Y\}$

$$\mathbb{P}[Z \ge k] = \mathbb{P}[\min\{X, Y\} \ge k]
= \mathbb{P}[X \ge k, Y \ge k] = \mathbb{P}[X \ge k] \mathbb{P}[Y \ge k]
= (1 - p)^{k-1} (1 - q)^{k-1} = (1 - (p + q - pq))^{k-1}
\mathbb{P}[Z = k] = \mathbb{P}[Z \ge k] - \mathbb{P}[Z \ge k + 1]
= (1 - (p + q - pq))^{k-1} (p + q - pq)$$

Extension: Negative Binomial Distribution

Geometric distribution: X = Number of trials before observing first success

Negative binomial distribution: X = Number of trials before observing r success

k-1 trials contain: rth success

- r-1 success
- k-r fails

$$\mathbb{P}[X=n] = \binom{n-1}{r-1} (1-p)^{n-r} p^r$$

Conclusion

Problem type 1:

Fix # of trials n, count # of successes k

Problem type 2:

Fix # of success r, count # of trials n

Bernoulli distribution

Geometric distribution

r = 1

$$n = 1$$
Poisson distribution: approximates

Negative Binomial distribution

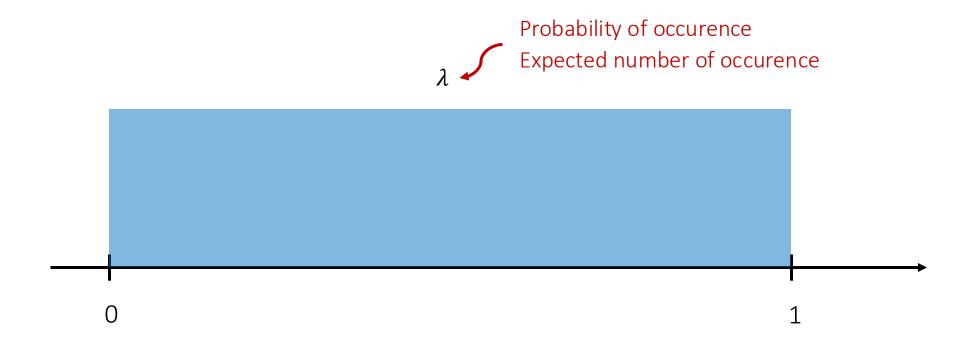
$$\mathbb{P}[X=k] = \binom{n}{k} p^k (1-p)^{n-k}$$

Binomial distribution

$$\mathbb{P}[X=n] = \binom{n-1}{r-1} p^r (1-p)^{n-r}$$

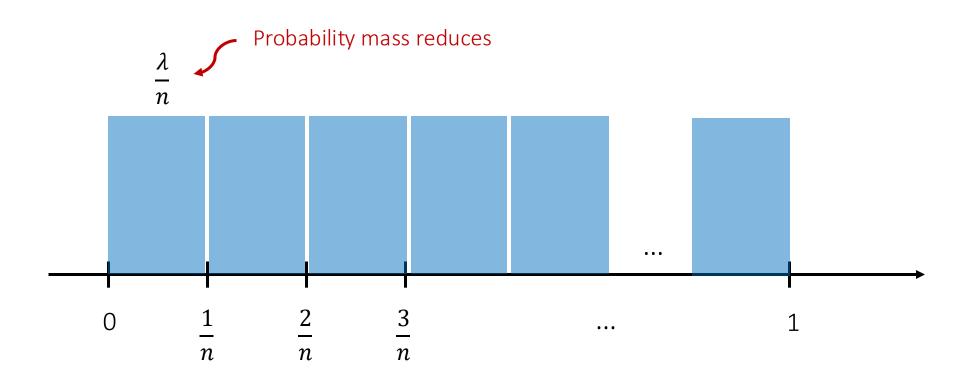
Poisson distribution as approximation of Binomial

Suppose we want to count the number of occurrence (X) over [0,1]



Poisson distribution as approximation of Binomial

Discretize into n bins, then $X \sim Bin\left(n, \frac{\lambda}{n}\right)$



Poisson distribution as approximation of Binomial

Discretize into n bins, then $X \sim Bin\left(n, \frac{\lambda}{n}\right)$ Limit as $n \to \infty$: $X \to Poisson(\lambda)$

$$\mathbb{P}[X=k] = \frac{e^{-\lambda}\lambda^k}{k!}$$

Law of rare events: If n large, p small, and $np = \lambda$, then $X \sim Bin(n,p)$ can be approximated with $Poisson(\lambda)$

Need to be careful with the dimensions!

Unit: Number of occurence

Problem 3: Shuttles and Taxis At Airport

(a) Rate of occurrence for shuttle $\lambda_1=1/20$ (1 per 20 minutes) Rate of occurrence for taxis $\lambda_2=1/10$ (1 per 10 minutes)

Number of occurrence of shuttle in [0, 20] Need to do unit conversion!

$$X \sim Poisson(1)$$
 $\frac{1 \, (shuttle)}{20 \, (minutes)} \cdot 20 \, (minutes) = 1 \, (shuttle)$

Number of occurrence of taxis in [0, 20]

$$Y \sim Poisson(2)$$
 $\frac{1 (taxis)}{10 (minutes)} \cdot 20 (minutes) = 2(taxis)$

Number of occurrence of vehicles in [0, 20]

$$X + Y \sim Poisson(3)$$
 $1(shuttle) + 2(taxis) = 3(vehicles)$